IMPACT({

{ turns, magnitude:multiple, ordering:strict} ;

% Turn assignment is handled in the game itself, sometimes the govt agent makes a few moves, sometimes it
doesn't

{ roles, speaker, listener} ;

{ players, min:2, max:2 } ;
{ player, id:user } ;
{ player, id:govt } ;

% the game is between Government (represented by the system) and the user of the system

{ store, id:possibleCurrentStates, owner:shared, structure:set, visibility:public, contents:$userDefined$ } ; % All the
possible combinations (disjunctions) of start states

{ store, id:possibleDesiredStates, owner:shared, structure:set, visibility:public, contents:$userDefined$ } ; % All the
possible combinations (disjunctions) of end states

{ store, id:possibleActions, owner:shared, structure:set, visibility:public, contents:$userDefined$ } ; % all the
possible actions

{ store, id:possibleValues, owner:shared, structure:set, visibility:public, contents:$userDefined$ } ; % all the possible
values

{ store, id:currentStates, owner:shared, structure:set, visibility:public, contents:$userDefined$ } ; % all the agreed
current states (needed to determine which action can be performed)

{ store, id:desiredStates, owner:shared, structure:set, visibility:public, contents:$userDefined$ } ; % all the agreed
desired states (needed to determine which action can be performed)

{ store, id:values, owner:shared, structure:set, visibility:public, contents:$userDefined$ } ; % all the agreed values

{ store, id:action, owner:shared, structure:set, visibility:public, contents:$userDefined$ } ; % the agreed action

{ store, id:governmentcomm, owner:govt, structure:set, visibility:public, contents:$userDefined$ } ; % the
government's commitments. They are not directly used in this protocol

{ store, id:usercomm, owner:user, structure:set, visibility:public, contents:$userDefined$ } ; % the user's
commitments

{transforce, {<agree_cs, C>, <agree_ds, D>, <agree_v, V>}, {agree_a, {a}}, {<{C,D,V},{a}>,
Value_Practical_Reasoning_Scheme}}; % this is the transitional force between all the agree moves (which assert the
premises) and the agree action move (which asserts the conclusion)

{ backtrack, on };
% backtrack is on because the govt agent has to ask a series of questions

{ rule, StartingRule, scope:initial,
{ assign(govt, speaker) & move(add, future, question_cs, S, govt, {inspect(in, S, PossibleCurrentStates)}) }} ;
% The game starts by adding a question for each possible starting state disjunction {p,q} to govt's moveset

{interaction, question_cs, {p,q}, questioning, {p}, questioning, {q}, "Is p or q true in the current situation?",
{ assign(user, speaker) & move(add, next, agree_cs, {p}, user) & move(add, next, agree_cs, {q}, user) }};
% after govt asks a question about the starting states the user can agree with one of them

{interaction, agree_cs, {p}, asserting, {p}, "p is true in the current situation",
{ if {size('empty, LegalMoves, govt)}
then {assign(govt, speaker) & store(add, {p}, usercomm) & store(add, {p}, CurrentStates)}
else {assign(govt, speaker) & store(add, {p}, usercomm) & store(add, {p}, CurrentStates) & move(add,
future, question_ds, s, govt, {inspect(in, s, PossibleDesiredStates)})}
B
% if the user agrees to some state p and govt's moveset is not empty (i.e. the govt can still ask question_cs
moves), then any agree_cs move is deleted from user's moveset,
% the state p is added to usercomm and currentStates and turn goes to govt (who can ask another
question_cs). Else (if govt's moveset is empty) the govt starts asking which
% desired states the user wants.

{interaction, question_ds, {p,q}, questioning, {p}, questioning, {q}, "By implementing the policy do we want to achieve
porq?",
{ assign(user, speaker) & move(add, next, agree_ds, {p}, user) & move(add, next, agree_ds, {q}, usercomm)
1

% after govt asks a question about a desired state the user can agree with one of them

{interaction, agree_ds, {p}, asserting, {p}, "We want to achieve p",
{ if {size('empty, Legalmoves, govt)}
then {assign(govt, speaker) & store(add, {p}, usercomm) & store(add, {p}, DesiredStates)}
elseif {extCondition(NotPossible{PossibleActions, CurrentStates, DesiredStates})}
then {assign(govt, speaker) & move(add, future, no_action, govt)}
else {assign(govt, speaker) & store(add, {p}, usercomm) & store(add, {p}, DesiredStates) & move(add,
future, question_v, s, govt, {inspect(in, s, PossibleValues)}} ;
% if govt's moveset is not empty (i.e. the govt can still ask question_ds moves), then any agree_ds move is deleted
from user's moveset, the state p is added to
% usercomm and turn goes to govt (who can ask another question_ds). Else if with CurrentStates and
DesiredStates there is no possible action

% then the govt can do a no_action move or else the government can ask which possible values the user agrees to
(question_v)

{interaction, no_action, "There is no possible policy action to get from CurrentStates to DesiredStates, please
choose other things you want to achieve",
{ store{remove, T, DesiredStates} & move(add, future, question_ds, s, {inspect(in, s,
PossibleDesiredStates)})} ;
% if no actions are possible the DesiredStates store is emptied and the desired state questions are again added to
govt's moveset. The user stays committed to
% the "impossible" desiredStates.

{interaction, question_v, {p}, questioning, {p}, "Which values do we want to promote?",
{ assign(user, speaker) & move(add, next, agree_v, {p}, user) & move(add, next, disagree_v, {p}, user) }};
% after govt asks a question about values the user can agree or disagree

{interaction, agree_v, {p}, asserting, {p}, "This will promote p",
{ if {size(lempty, Legalmoves, govt)}
then {assign(govt, speaker) & store(add, {p}, usercomm) & store(add, {p}, values)}
else {assign(govt, speaker) & store(add, {p}, usercomm) & store(add, {p}, values) & move(add, future,
question_a, {S}, govt, {inspect(in, s, PossibleActions) & extCondition(Possible{s, CurrentStates, DesiredStates})}}
1
% again the govt asks questions until its moveset is empty. Otherwise it is checked which actions are possible and
these are asked.

{interaction, disagree_v, {p}, disagreeing, {p}, "This will not promote p",
{ if {size('empty, Legalmoves, govt)}
then {assign(govt, speaker)}
else {assign(govt, speaker) & move(add, future, question_a, {S}, govt, {inspect(in, s, PossibleActions) &
extCondition(Possible{s, CurrentStates, DesiredStates})}}
B

{interaction, question_a, {S}, questioning, S, "Which action from S should we perform?",
{ assign(user, speaker) & move(add, next, agree_a, s, user) }};
% the user can agree to one of S, so for each element of S an agree_a move is added

{interaction, agree_a, {p}, asserting, {p}, "We should perform p",
{ assign(govt, speaker) & store(add, {p}, usercomm) & store(add, {p}, Action) & move(add, future, summary,
govt) }} ;
% once the user agrees to an action the rest of the agree_a moves are deleted from his moveset and
question_v moves are added to govt's moveset

{interaction, summary, "According to you, given CurrentStates, Actions will result in DesiredStates, which will
promote Values",
{ status(terminate, IMPACT) }};

